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SOME COMMON SUB-FIELDS OF ARTIFICIAL INTELLIGENCE 

Machine Learning: Machine Learning uses algorithms 
to find patterns and features within data and use them 
for making decisions and predictions on new sets of 
data, using either labeled data (supervised learning) or 
unlabeled data (unsupervised learning). Deep Learning 
is a field of Machine Learning that can use labelled 
or unlabeled data to create a model without human 
intervention to extract and assign features to different 
sets of categories of data. These capabilities of machine 
learning are driving predictive modeling for bioactivity 
and toxicity in drug screening3,5. 

Expert Systems: These are rule-based systems that 
mimic decision-making of a human expert. Expert 
systems acquire knowledge in the form of data files or 
inputs from experts. It then uses a rule-based engine 
housed within the expert system to process this 
information to provide output to the end-user. Expert 
systems are aiding doctors with patient diagnosis2,3,4.

Computer vision: A field of AI that enables hardware 
and software systems to process digital images, videos 
and other visual inputs to take actions and/or make 
recommendations. While machine learning and expert 
systems serve as the mind of AI solutions, computer 
vision serves as its eyes. For instance, computer vision is 
used in assisted driving functions to assist a vehicle to 
remain in their lane and to prevent collisions2,3.

Natural language processing: Natural Language 
Processing, a branch of AI, helps AI solutions process 
text and spoken words in a manner that is similar to 
how humans process them. It combines computational 
linguistics—rule-based modeling of human 
language—with statistical, machine learning, and deep 
learning models. Its common uses include fake news 
identification and spam detection2,3.

ABSTRACT:

Artificial Intelligence (AI) and advanced computational 
techniques are increasingly serving as the primary choice 
for determining data accuracy and reviewing large sets of 
bioanalytical data1. Expert systems, an AI component that 
uses a rule-based approach, can provide possible solutions for 
reviewing and auditing of Pharmacokinetic (PK) bioanalytical 
data and for statistical analysis of immunogenicity Anti-Drug 
Antibody (ADA) data by removing subjective decision making 
from the analysis. Historically, these assay data are reviewed 
first by the Principal Investigators (PI), then Quality Control 
(QC) and finally Quality Assurance (QA). Based on this data 
review model, the amount of time PI, QC and QA spend on 
generating and reviewing data has increased significantly 
with each complexity added by the agency in the new FDA 
guidance’s of 2018 and 2019.  With this increased complexity 
and the number of Projects or Studies moving through the 
laboratory, it is impossible for all reviewing teams to find all 
issues, missed data tables or inadvertent subjectivity and 
bias introduced in population statistics. Since these errors 
are spread over many different projects, identifying the root 
causes of these errors is burdensome. This paper examines 
the adoption of an AI-enabled software in a Contract Research 
Organization (CRO), the operational bioanalysis changes 
resulting from its adoption, and the return on investment from 
this AI tool. Focusing on the areas and technical modifications 
to the bioanalysis process, which has reduced the errors and 
removed any subjective decision making on Immunogenicity 
population statistics for ADA analysis. 

BACKGROUND:

WHAT IS ARTIFICIAL INTELLIGENCE?
Artificial Intelligence (AI) entails systems or machines that 
mimic human intelligence to assist humans with tasks that 
involve immense amounts of data or with everyday tasks that 
are repetitive and tedious2. Some examples of AI tools include 
chatbots that assist in serving customers, complex AI solutions 
that predict which drug candidates may perform better 
for certain disease state targets, and software that analyze 
financial transactional data to identify 
fraudulent patterns.

While machine learning (ML) is the most 
known form of AI, it encompasses many 
other domains, such as Expert Systems, 
Computer Vision, Natural Language 
Processing, and Robotics, to name a few3. 
Additionally, AI is also used to bolster 
advanced computational techniques, such 
as image processing, to provide further 
incremental benefits that image processing 
cannot provide as a standalone technology. 
With the broad range of domains, various 
applications, and its capability to provide 
more powerful solutions alongside 
other existing technologies, AI can be 
transformational in the processing and 
analysis of data. Figure 1: Artificial Intelligence and its subfields (Das, 2018). 



WHAT IS RED THREAD?
Red Thread uses expert systems to create if-then rules that 
guide the process and analysis of pharmacokinetic and ADA 
data. When a user uploads a PK report, Red Thread uses expert 
system rules along with a dictionary of table titles to classify 
various data tables in the report. The user is then prompted 
to confirm the classification of these tables with a simple ‘Yes/
No’ selection. Each data table is then analyzed and audited 
per the rule-based engine defined for that data set. Data is 
then flagged green for compliance, red for non-compliance 
and yellow for requiring additional review within the context 
of experimental design or other parameters. Red Thread also 
uses a combination of expert systems and advanced statistical 
modelling for ADA data. Similar to the PK module, expert 
systems define the flow and progression of data from step to 
step. Different statistical models and techniques are used to 
remove biological and analytical outliers, followed by cut point 
determination and/or sensitivity analysis.

PK VALIDATION REPORT ANALYSIS:

THE PROBLEM
Drug development is a high cost and high stakes process 
that is in dire need of time and cost savings. Despite the 
global pharmaceutical industry going virtual, the increased 
complexity of new drug modalities and technologies along 
with the newly proposed guidance of 2018 are adding on to 
the already inflated cost and time consumption.

While the quality of the PK validation report is extremely 
important to the sponsor and the regulatory agencies, it can 
be challenging for a CRO to transfer data to a sponsor for an 
Investigational New Drug application or clinical assessment 
with little or no errors. The process of review and auditing 
of bioanalytical data is designed to ensure high quality data 
through review of data tables, descriptive information on these 
data tables and key indicators from the data. However, most 
CROs are often racing to meet tight deadlines for data and 
report delivery due to limited resources and overburdened 
staff.

INTRODUCTION:

As the amounts and complexity of information available 
is increasing, AI and advanced computational techniques 
are playing a critical role in determining data accuracy and 
reviewing large bioanalytical data sets1. AI is assisting in 
simulating activities associated with human intellect by 
not only processing and comprehending data, but also 
by thinking, acquiring new abilities, and adapting to new 
contexts and challenges4. Therefore, the use of AI in the 
pharmaceutical industry can increase accuracy, reduce the 
human workload, remove bias and errors, as well as reduce the 
time taken to evaluate these data sets2,3,4. Due to its immense 
potential, AI solutions have found a place in multiple sectors of 
pharmaceutical industry, ranging from bioactivity prediction 
in drug screening and regulation of in-line quality in Quality 
Control (QC) and Quality Assurance (QA) to assisting in subject
selection in clinical trials and market prediction and analysis 

in product management lifecycle5. The scope of this paper 
is limited to the application of AI in QA and QC processes 
of large molecule bioanalytical pharmacokinetic (PK) and 
immunogenicity Antidrug-antibody (ADA) data.

Currently, the amount of data, tables and number of validation 
reports for pharmacokinetics (PK) has increased dramatically 
with the new regulatory guidance of May 2018. The new 
guidance, increased complexity arising from new technologies, 
and aggressive timelines are having a negative impact on data 
quality. On the other hand, due to the regulatory guidance of 
January of 2019 and numerous white papers on the statistical 
analysis, the statistical assessment of Anti-Drug Antibodies 
(ADA) has become significant in the regulatory acceptance 
of the resulting data from these experiments6,7. For accurate 
and appropriate statistical analysis, it is critical to provide 
objective and unbiased data. To ensure high quality and 
thorough review of large molecule pharmacokinetic data and 
to generate unbiased and objective statistical analysis of ADA 
data, KCAS Bioanalysis and Biomarker Services (KCAS) will 
evaluate the use of Red Thread® by Ariadne Software®.

Figure 2. Applications of artificial intelligence in pharmaceutical value chain (Paul, 2021). 



THE SOLUTION
The Red Thread AI software evaluated in this white paper 
provides a possible solution to these issues. It will increase 
throughput, transparency, and oversight in operations prior to 
QC or QA evaluation. The tool is designed by industry experts 
and provides a remote data review solution. It works by 
highlighting more findings than the manual process, thereby 
assuring robust review and auditing of bioanalytical data 
that ultimately reduces potential rework. By providing faster 
review of data tables and reports, it decreases time and cost 
consumption, as well as allows the end user/reviewer to spend 
more of their time troubleshooting errors, gaps, and potential 
concerns. Additionally, it enables the identification of problems 
and potential gaps within the CRO operations systems to 
correct, improve, and find efficient methods for the generation 
and review of data tables. The Red Thread AI tool fills the void 
of a commercially available scientific review and auditing tool 
for PK bioanalytical data, a manual process that is subject to 
missed errors. (Figure 3).

Red Thread is built on bioanalytical expertise, using clinical 
and preclinical reports from various sponsors and CROs. The 
software uses an alerting system to communicate areas of 
concern found in the analysis of the PK report to the end-user 
and prompts them to decide whether to accept the data or 
take action to address a finding. The alert system is based 
on regulatory guidelines and on industry best practices, where 
there is ambiguity or gap in guidance. It flags compliant 
data in green, non-compliant data in red, and data requiring 
additional review in yellow. Data flagged as yellow can 
highlight near-failure patterns, recurring failures, high risk 
areas due to subjective interpretation of any open-ended 
guidance, or data that requires additional information/context 
before a decision can be reached (Figure 4).

The software uses an extensive dictionary mapping of 
analytically meaningful terms in order to properly classify 
tables found in a report and translate the data into an internal 
representation that can be checked against a comprehensive 
list of checks (as per regulatory guidance and industry best 
practices). The expert system rules analyze and check the 
data in the PK validation report for the following bioanalytical 
parameters: Individual Batch Performance, Sample 
Concentration, Reanalysis, Stabilities (Reference Material, 
Storage, etc.), Incurred Sample Reanalysis (ISR), Quality Controls, 
Calibration/Standard (STD) Curves and Regression Models. As 
wider variety of data and report formats are used to test the 
application, the semantic mapping logic used will grow to 
become more complete, flexible, and context dependent.

Designed to accept PDF, Microsoft Word, and Microsoft Excel 
files as input, depending on the analysis module, the Red 
Thread platform maintains data integrity and does not change, 
modify, or correct data on the submitted report document. 
Instead, it parses and audits the uploaded document using an 
alert system that highlights the findings in an output report 
that is separate from the document submitted (Figure 5). The 
uploaded document is deleted right after processing, and the 
output report contains little to no proprietary information to 
ensure a high level of confidentiality and security.

Red Thread®: Serving an Unmet Industry Need

Security and Compliance

• Red Thread complies with 21 CFR Part 11,
Good Laboratory Practices (GLP), International
Organization for Standardization (ISO) 27001,
Service Organization Control (SOC) 2, and General
Data Protection Regulation (GDPR).

• Red Thread deletes the client’s data file as soon
as it has been processed and does not save client’s
proprietary information, even in the output report.

• Red Thread provides an audit trail.
•

•

Ariadne has information security management 
system (ISMS) policies in place with trained 
employees. Its ISMS is ISO 27001 certified as of 
Jan 14, 2022 and is expected to receive its SOC 2 
attestation report in June 2022.
As an Amazon Web Services (AWS) customer, 
Ariadne benefits from AWS data centers and a 
network architected to protect its information, 
identities, and applications.

Red

Yellow:

Green:

Non-compliant

Reoccurring failure trends, 
near-failure patterns, 
Individual occurrences from 
systemic issues, lack of best 
practice, areas of risk

Compliant

Figure 3. While several automation tools support the flow of PK 
bioanalytical data from sample collection to report writing, Red Thread 

meets an unmet need of automating scientific review and auditing of 
bioanalytical data.

Figure 4. Red Thread Alerting system flags data to draw an 
end-user’s attention to sections that require action or 
decision-making, thereby allowing for a faster review.



Figure 5. The step-by-step process of submitting a PK validation report 
for review through Red Thread.

METHOD AND DATA
For PK bioanalytical data, Ariadne Software offers method 
validation as well as sample analysis modules for both small 
and large molecules. For the purpose of this evaluation, 
KCAS used the Red Thread Large Molecule PK Module for its 
Ligand Binding Assays (LBA) data.  For the evaluation, a 
generic PK validation report was created and small errors were 
added within the data. This report was then uploaded as a PDF 
file with analyte name as “Generic.” To ensure brevity, only 
three bioanalytical parameters are being used as examples. 
Figures 6, 7 and 8 demonstrate the alert results for Batch 
Summary Run, Selectivity, and Validation Summary Table for 
this PK validation report.

PROCESS

Figure 6. Red Thread alerts for a batch run summary table (top). The findings in the alert system are indicated 
as “Green”, “Red”, and “Yellow” flags. The colored boxes in Red Thread output report highlight the 

corresponding data in the data table (bottom). 



Figure 7. Red Thread alerts for Lower Limit of Quantitation (LLOQ) and High Quality Control (HQC) Selectivity (top). The findings in the alert system are 
indicated as “Green”, “Red” and “Yellow” flags. The colored boxes in Red Thread output report highlight the corresponding data in the data table 

(bottom).



Figure 8. Red Thread alerts for validation summary table (top). The findings in the alert system are indicated as 
“Green”, “Red” and “Yellow” flags. The colored boxes in Red Thread output report highlight the corresponding 

data in the data table (bottom). 



RESULTS
On a manual evaluation of all green, yellow, and red flags, 
it was found that the AI-empowered Red Thread flagged all 
errors that were introduced in a fully validated method report 
with 100% accuracy. 

RETURN ON INVESTMENT FOR PK METHOD VALIDATION 
AND SAMPLE ANALYSIS MODULES
A return on investment (ROI) was calculated based on the cost 
of KCAS’ QC and QA performing a 100% review (to maximize 
finding all errors of this type data). The ROI was calculated by 
assessing hourly costs, time consumed in manual report 
review, and time taken for corrective actions if findings 
are not timely addressed, and then compared to Ariadne’s 
licensing costs.  Based on this calculation and considering the 
time/cost of Red Thread to find all these errors, the net ROI 
was approximately 13.6 times the cost of the Red Thread 
software.

ADA STATISTICAL DATA GENERATION BY RED THREAD

THE PROBLEM
Although the 2019 FDA guidance of ADA data provides a 
general direction for cut point analysis, however in order to 
allow for scientific judgment on a case-by-case basis, the 
document is not highly prescriptive in the preferred statistical 
approach. This has raised several questions about outlier 
determination and which statistical models should be used. 
ADA data can lend itself to subjective removal of biological and 
analytical outliers due to lack of expertise, non-standardized 
best practices, and individual biases. This subjective outlier 
removal can sometimes lead to over-refining of data, thereby 
misrepresenting the statistical 
analysis of the data. Additionally, 
it is not always easy to determine 
which statistical model or 
test best serves a data set, as 
different statistical approaches 
are required for data sets with 
different complexities and 
variabilities7.

THE SOLUTION
Red Thread uses an expert 
system, one of the oldest forms 
of AI that uses an if-then based 
rule algorithm to process data 
and provide an appropriate 
outcome3,4. In Red Thread, expert 
systems are used in parsing and 
organizing inputs, determining 
the correct statistical approach for cut point determination, and 
then executing the steps to obtain the results. This emulates the 
decision and reasoning process that would be performed by a 
subject matter expert conducting this analysis in accordance 
with regulatory guidelines and industry best practices. An 
example of a rule that the program follows is testing the 
distribution of cut point data for normality using the Shapiro-
Wilk test and measuring the skew of the distribution in order to 
obtain a proper threshold for cut point determination.

In addition to calculating the screening, confirmatory and 
titer cut point values, Red Thread uses the expert systems to 
guide the determination of the sensitivity of the screening and 
confirmatory assays as well as provide statistically derived low 
positive control (LPC) for each of these tiers in accordance with 
the FDA 2019 guidance and industry best practices.

METHOD AND DATA
Cut Point Determination
The Shapiro-Wilk test, developed by Samuel Sanford Shapiro 
and Martin Wilk in 1965, is a statistical test for normality in a 
population. A p-value that is lower than a chosen alpha level 
indicates rejection of the null hypothesis that the population 
data is sampled from the normal distribution, while a higher 
p-value conversely fails to reject this hypothesis (Figure 9). 
The result from the Shapiro-Wilk test, along with a measure of 
the skewness of the population data, is used by Red Thread to 
determine whether to find cut point values using a parametric 
or nonparametric approach. Under the parametric approach, in 
which the population is assumed to follow a normal distribution, 
cut point values are determined using the mean and standard 
deviation along with a Z score corresponding to the desired 
confidence level. Under the nonparametric approach, when 
the data has been categorized as non-normal, the cut point is 
determined based on a percentile calculated directly from the 
data distribution and the level of confidence6,7,8,9 (Figure 10, 13).

Figure 9. Histograms of the screening (left) and confirmatory (right) cut 
point data sets – graphic visualization of the normally distributed data.



Table 1: Red Thread provides a snapshot of statistical analysis of ADA cut point determination data that includes outliers, corresponding IQR, normality test 
results, cut point values, and confidence level.

Figure 10. Red Thread’s decision making process for screening (left) and 
confirmatory (right) cut point determination.

Red Thread also uses various other statistical techniques 
in its ADA module for calculations6,7. To determine both 
analytical and biological outliers, the Tukey Outlier Test can be 
applied at varying Interquartile Ranges (IQR) from 1.5 to 3 
(more restrictive to more inclusive outlier test). To determine 
analytical, or intra-subject, outliers, each individual subject’s 
observed value (signal-to-noise, or S/N, ratio for screening 
samples and inhibition ratio for confirmatory samples) is 
compared to the median of all the subject’s values across 
multiple runs using the Tukey Outlier Test. Once identified, all 
the analytical outliers are removed from the data set and the 
median values for all observations across each subject are 
recalculated. Next, to determine the biological, or inter-
subject, outliers, each median subject value is compared to 
the global mean of the entire data set using the Tukey Outlier 
Test and removed. (Figures 11, 12, 13).

Figure 11: Screening Cut Point Scatter Plot of S/N Values Vs Panel Number.



Figure 12:  Screening Cut Point box plot without analytical and biological outliers marked.



Sensitivity and Low Positive Control Determination 

After determining the various cut point values, Red Thread 
can also determine the sensitivity of the assay as well as 
calculate the appropriate concentrations for the low positive 
control (LPCs) with a 99% confidence level (as per guidance) 
for both, the screening and confirmatory tiers. Red Thread 
uses numerical optimization techniques to find the best fit 
equations using a 4- and 5-parameter logistic regression as 
well as the power of multiple validated Python libraries to 
visualize the distribution of the data and the results8,9. The 
resulting regression equations are used to back-calculate the 
mean concentration of anti-drug antibodies where the cut 
point intercepts the regression curve. These results are then 
reported as the Mean Positive Control (PC) Concentration 
(Figure 14). The sensitivity of the assay is defined as the 
concentration at which the assay would produce a positive 
result with 95% of the time (95% Upper Confidence Level), and 
is calculated as follows:

Sensitivity at 95% Upper Confidence Level
= Mean SCP Conc +(1.645*SD)

where the Mean Screening Cut Point (SCP) Conc is the mean 
of the concentrations found across sensitivity runs, 1.645 is the 
Z-critical value from the normal distribution with 90 percent 
of the data centered in the middle with 5 percent of the data 
in each tail, and the SD is the standard deviation of the means. 
Using the same sensitivity curve data, Red Thread statistically 
derives the appropriate LPC concentration for both, screening 
(sLPC) and confirmatory tiers (cLPC), using the following 
equation:

sLPC = Mean PC Concentration at SCP + (t0.01,df × SD)

where t0.01,df is the t-critical value at 99 percent with degrees 
of freedom (df ) equal to the sample size (number of sensitivity 
curves run) minus one, and the SD is the standard deviation of 
the means.

By using the t-critical value, the data is appropriately modelled 
at the 99th percentile when in the presence of a small sample 
size (such as the 6 sensitivity curves typically conducted). This 
signifies that a t-critical value is better at the 99th percentile 
than a normal critical value, which was used in the sensitivity 
assessment, because it enables monitoring the assay at 
the lower end of the cut point values so that the positive 
response is captured 99 percent of the time. Using the normal 
distribution critical value in the presence of a small sample size 
would result in a greater failure rate when used during sample 
analysis. This implies that the more sensitivity curves that are 
run, the greater the confidence we have in the Mean PC 
Concentration and the SD used in the calculation.

Figure 13. Estimation 
of the screening 

Low Positive Control 
(sLPC) from the 
sensitivity data 
run during the 

screening cut point 
determination.



RESULTS
KCAS needed these statistical determinations and outlier tests 
need to be performed in an objective manner10,11. Through the 
use of AI and advanced computational techniques, Red Thread 
can not only increase throughput but also facilitate objective 
decision making around outliers. KCAS has completed over 17 
ADA statistical reports for clients with increased efficiencies 
and objectivity as well as with higher consistency in its 
statistical approach. 

The analysis for the cut point, LPCs, analytical outliers as well 
as biological outliers takes minutes to calculate using Red 
Thread. KCAS currently avails service provided by Ariadne 
where KCAS shares data with Ariadne for these analyses with 
a typical turnaround time of up to 3-5 business days for the 
statistical analyses, with a same-day turnaround time offered 
if a study needs to be expedited. The formal statistical report 
is provided shortly afterwards to be appended to the final 
validation report. The traditional, non-automated approach 
usually involves sharing the statistical analysis and the final 
report all together in a few weeks. This calls for the lab to wait 
for further validation or repeat the work if the lab continued 
with its assumptions around the expected CP values or LPC 
concentrations to be more or less statistically accurate. With 
Ariadne providing the cut point and LPC statistical analysis 
within days rather than weeks, KCAS can proceed with the 
post-cut point analysis validation work more promptly than 
a traditional, non-automated approach while maintaining 
regulatory compliance and avoiding costly rework.

ROI FOR SCREENING, CONFIRMATORY AND TITER CUT 
POINT DETERMINATION
A comparison of manual resources used for outlier removal, 
cut point determination, and final report generation to the 
use of Ariadne Software and services yielded a net of 20.5 
times the cost of using Red Thread. The ROI was calculated by 
assessing hourly costs, time spent in manually reviewing the 
reports and time taken for corrective actions if findings are not 
timely addressed.

CONCLUSION

For large molecule PK data, Red Thread was able to find non-
compliant data and concerning data and/or trends, and flag 
it accordingly for the bioanalysts to decide on whether the 
findings need to be accepted or addressed through rework. 
The software also provided time savings in addition to better 
resource management in an environment where CROs need 
to meet aggressive timelines with available resources. In 
summary, KCAS will continue to use Red Thread for operational 
review of reports before submitting to QC and QA, thereby 
providing its clients with a more qualified product for their use 
in regulatory filings.

For large molecule ADA data, Red Thread provides a compliant 
and robust method to calculate biological and analytical 
outliers, followed by cut point determination and sensitivity 
analysis. It is able to objectively perform these analyses in a 
fraction of the time with a consistent approach with each data 
set. Additionally, Ariadne Software’s service to create a final 
report has helped KCAS focus its attention on designing and 
performing experiments for its clients. In summary, KCAS will 
continue using Red Thread for generating ADA statistical data 
and final reports for its clients’ submission to the regulatory 
bodies.
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